Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1340013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384465

RESUMO

Background: Neurological dysfunction and glial activation are common in severe infections such as sepsis. There is a sexual dimorphism in the response to systemic inflammation in both patients and animal models, but there are few comparative studies. Here, we investigate the effect of systemic inflammation induced by intraperitoneal administration of lipopolysaccharide (LPS) on the retina of male and female mice and determine whether antagonism of the NLRP3 inflammasome and the extrinsic pathway of apoptosis have protective effects on the retina. Methods: A single intraperitoneal injection of LPS (5 mg/kg) was administered to two months old C57BL/6J male and female mice. Retinas were examined longitudinally in vivo using electroretinography and spectral domain optical coherence tomography. Retinal ganglion cell (RGC) survival and microglial activation were analysed in flat-mounts. Retinal extracts were used for flow cytometric analysis of CD45 and CD11b positive cells. Matched plasma and retinal levels of proinflammatory cytokines were measured by ELISA. Retinal function and RGC survival were assessed in animals treated with P2X7R and TNFR1 antagonists alone or in combination. Results: In LPS-treated animals of both sexes, there was transient retinal dysfunction, loss of vision-forming but not non-vision forming RGCs, retinal swelling, microglial activation, cell infiltration, and increases in TNF and IL-1ß. Compared to females, males showed higher vision-forming RGC death, slower functional recovery, and overexpression of lymphotoxin alpha in their retinas. P2X7R and TNFR1 antagonism, alone or in combination, rescued vision-forming RGCs. P2X7R antagonism also rescued retinal function. Response to treatment was better in females than in males. Conclusions: Systemic LPS has neuronal and sex-specific adverse effects in the mouse retina, which are counteracted by targeting the NLRP3 inflammasome and the extrinsic pathway of apoptosis. Our results highlight the need to analyse males and females in preclinical studies of inflammatory diseases affecting the central nervous system.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Retina , Células Ganglionares da Retina/metabolismo , Inflamação/metabolismo
2.
J Neurosci ; 43(7): 1125-1142, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732073

RESUMO

At high levels, extracellular ATP operates as a "danger" molecule under pathologic conditions through purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Its endogenous activation is associated with neurodevelopmental disorders; however, its function during early embryonic stages remains largely unclear. Our objective was to determine the role of P2X7R in the regulation of neuronal outgrowth. For this purpose, we performed Sholl analysis of dendritic branches on primary hippocampal neurons and in acute hippocampal slices from WT mice and mice with genetic deficiency or pharmacological blockade of P2X7R. Because abnormal dendritic branching is a hallmark of certain neurodevelopmental disorders, such as schizophrenia, a model of maternal immune activation (MIA)-induced schizophrenia, was used for further morphologic investigations. Subsequently, we studied MIA-induced behavioral deficits in young adult mice females and males. Genetic deficiency or pharmacological blockade of P2X7R led to branching deficits under physiological conditions. Moreover, pathologic activation of the receptor led to deficits in dendritic outgrowth on primary neurons from WT mice but not those from P2X7R KO mice exposed to MIA. Likewise, only MIA-exposed WT mice displayed schizophrenia-like behavioral and cognitive deficits. Therefore, we conclude that P2X7R has different roles in the development of hippocampal dendritic arborization under physiological and pathologic conditions.SIGNIFICANCE STATEMENT Our main finding is a novel role for P2X7R in neuronal branching in the early stages of development under physiological conditions. We show how a decrease in the expression of P2X7R during brain development causes the receptor to play pathologic roles in adulthood. Moreover, we studied a neurodevelopmental model of schizophrenia and found that, at higher ATP concentrations, endogenous activation of P2X7R is necessary and sufficient for the development of positive and cognitive symptoms.


Assuntos
Neurônios , Receptores Purinérgicos P2X7 , Animais , Feminino , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/genética , Dendritos
3.
Br J Pharmacol ; 179(12): 2986-3006, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34962289

RESUMO

BACKGROUND AND PURPOSE: Refractory status epilepticus is a clinical emergency associated with high mortality and morbidity. Increasing evidence suggests neuroinflammation contributes to the development of drug-refractoriness during status epilepticus. Here, we have determined the contribution of the ATP-gated P2X7 receptor, previously linked to inflammation and increased hyperexcitability, to drug-refractory status epilepticus and its therapeutic potential. EXPERIMENTAL APPROACH: Status epilepticus was induced via a unilateral microinjection of kainic acid into the amygdala in adult mice. Severity of status epilepticus was compared in animals with overexpressing or knock-out of the P2X7 receptor, after inflammatory priming by pre-injection of bacterial lipopolysaccharide (LPS) and in mice treated with P2X7 receptor-targeting and anti-inflammatory drugs. KEY RESULTS: Mice overexpressing P2X7 receptors were unresponsive to several anticonvulsants (lorazepam, midazolam, phenytoin and carbamazepine) during status epilepticus. P2X7 receptor expression increased in microglia during status epilepticus, at times when responses to anticonvulsants were reduced. Overexpression of P2X7 receptors induced a pro-inflammatory phenotype in microglia during status epilepticus and the anti-inflammatory drug minocycline restored normal responses to anticonvulsants in mice overexpressing P2X7 receptors. Pretreatment of wild-type mice with LPS increased P2X7 receptor levels in the brain and reduced responsiveness to anticonvulsants during status epilepticus, which was overcome by either genetic deletion of P2X7 receptors or treatment with the P2X7 receptor antagonists, AFC-5128 or ITH15004. CONCLUSION AND IMPLICATIONS: Our results demonstrate that P2X7 receptor-induced pro-inflammatory effects contribute to resistance to pharmacotherapy during status epilepticus. Therapies targeting P2X7 receptors could be novel adjunctive treatments for drug-refractory status epilepticus.


Assuntos
Receptores Purinérgicos P2X7 , Estado Epiléptico , Trifosfato de Adenosina/metabolismo , Animais , Anticonvulsivantes/efeitos adversos , Convulsivantes/efeitos adversos , Lipopolissacarídeos/farmacologia , Camundongos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo
4.
J Med Chem ; 64(4): 2272-2290, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33560845

RESUMO

The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists. They comprise purine or xanthine cores linked to an aryl group through different short spacers. Compounds were tested in YO-PRO-1 uptake assays and intracellular calcium dynamics in a human P2X7-expressing HEK293 cell line, two-electrode voltage-clamp recordings in Xenopus laevis oocytes, and in interleukin 1ß release assays in mouse peritoneal macrophages. BBB permeability was assessed by parallel artificial membrane permeability assays and P-glycoprotein ATPase activity. Dichloroarylpurinylethanones featured a certain P2X7 blockade, being compound 6 (2-(6-chloro-9H-purin-9-yl)-1-(2,4-dichlorophenyl)ethan-1-one), named ITH15004, the most potent, selective, and BBB-permeable antagonist. Compound 6 can be considered as a first non-nucleotide purine hit for future drug optimizations.


Assuntos
Anti-Inflamatórios/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Purinas/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Oócitos/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/metabolismo , Purinas/síntese química , Purinas/metabolismo , Xenopus laevis
5.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008868

RESUMO

Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells.


Assuntos
Cálcio , Catecolaminas , Células Cromafins , Exocitose , Mitocôndrias , Animais , Bovinos , Cálcio/metabolismo , Sinalização do Cálcio , Catecolaminas/metabolismo , Células Cultivadas , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Cultura Primária de Células
6.
Med Res Rev ; 40(6): 2427-2465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32677086

RESUMO

Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Preparações Farmacêuticas , Animais , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7
7.
Front Mol Neurosci ; 13: 93, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595451

RESUMO

This review focuses on the purinergic ionotropic receptor P2X7 (P2X7R) as a potential target for developing drugs that delay the onset and/or disease progression in patients with amyotrophic lateral sclerosis (ALS). Description of clinical and genetic ALS features is followed by an analysis of advantages and drawbacks of transgenic mouse models of disease based on mutations in a bunch of proteins, particularly Cu/Zn superoxide dismutase (SOD1), TAR-DNA binding protein-43 (TDP-43), Fused in Sarcoma/Translocated in Sarcoma (FUS), and Chromosome 9 open reading frame 72 (C9orf72). Though of limited value, these models are however critical to study the proof of concept of new compounds, before reaching clinical trials. The authors also provide a description of ALS pathogenesis including protein aggregation, calcium-dependent excitotoxicity, dysfunction of calcium-binding proteins, ultrastructural mitochondrial alterations, disruption of mitochondrial calcium handling, and overproduction of reactive oxygen species (ROS). Understanding disease pathogenic pathways may ease the identification of new drug targets. Subsequently, neuroinflammation linked with P2X7Rs in ALS pathogenesis is described in order to understand the rationale of placing the use of P2X7R antagonists as a new therapeutic pharmacological approach to ALS. This is the basis for the hypothesis that a P2X7R blocker could mitigate the neuroinflammatory state, indirectly leading to neuroprotection and higher motoneuron survival in ALS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...